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CHEMISTRY

Exploring and mapping chemical space with molecular

assembly trees

Yu Liu, Cole Mathis, Michat Dariusz Bajczyk, Stuart M. Marshall, Liam Wilbraham, Leroy Cronin*

The rule-based search of chemical space can generate an almost infinite number of molecules, but exploration of
known molecules as a function of the minimum number of steps needed to build up the target graphs promises
to uncover new motifs and transformations. Assembly theory is an approach to compare the intrinsic complexity
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and properties of molecules by the minimum number of steps needed to build up the target graphs. Here, we
apply this approach to prebiotic chemistry, gene sequences, plasticizers, and opiates. This allows us to explore
molecules connected to the assembly tree, rather than the entire space of molecules possible. Last, by developing
areassembly method, based on assembly trees, we found that in the case of the opiates, a new set of drug candi-
dates could be generated that would not be accessible via conventional fragment-based drug design, thereby
demonstrating how this approach might find application in drug discovery.

INTRODUCTION

Chemical space is populated by a vast range of compounds, which
can be characterized by their molecular composition, formula, graph
representation, and reactivity (I, 2). The generation of molecules via
their graphs can be enumerated to give an unimaginably vast number of
at least 10%° small organic molecules (1, 3, 4), but this is unrealistic,
as many of these molecules might be unstable or inaccessible syn-
thetically. However, when exploring biochemistry, only a few hun-
dred different types of “unique” small molecules are needed by the
simplest living organisms (1, 5), indicating that the chemical space
relevant to biology on Earth is a tiny fraction of chemical space that
is possible (6, 7). For example, many of the related structures be-
tween these known compounds are undiscovered and unknown
(e.g., opiates and cannabinoids are found to occur in related clusters
of structures but no cross between these structure types are known).
The issue therefore arises about how the space of molecules can be
effectively searched (1, 2, 8) and what constrains molecules to be
both thermodynamically possible and biologically accessible (2, 9-11)
because although many molecules are physically possible, the num-
ber of molecules accessible by the current machinery of biology is
smaller (9, 12-15).

One way to explore the universe of molecules is to construct a
chemical space as a dataset, e.g., GDB-17 database (16, 17), Drug-
Bank (18), and PubChem (19), and then navigate the dataset using
molecular descriptors (20-23). Searching these databases is in-
efficient because it requires exhaustively enumerating [or Bayesian
optimization (24)] and screening molecules for desirable proper-
ties. Similarly, it is possible to iteratively generate chemical subspaces,
followed by filtering unwanted structures, until desired molecules
are obtained. This can be done using a genetic algorithm (25, 26),
extrapolation techniques (27, 28), or even using human intuition (29).
However, given the relative sizes of possible chemical space, com-
pared to the number of interesting molecular structures, it is not clear how
comprehensive any of these approaches will be. Recently, machine
learning and statistical techniques have been introduced into the navi-
gation of chemical space (30, 31). For example, hundreds of thousands

School of Chemistry, University of Glasgow, University Avenue, Glasgow G12
8QQ, UK.
*Corresponding author. Email: lee.cronin@glasgow.ac.uk

Liu et al., Sci. Adv. 2021; 7 : eabj2465 24 September 2021

of existing chemical structures were used to train a deep neural
network so that each molecule can be assigned to a set of discrete
coordinates in the continuous latent space of the neural network.
Navigating within this discrete chemical space corresponds to nav-
igating in the continuous latent space, which is much easier compu-
tationally (32). Alternatively, a convolutional neural network can be
trained directly on graph representations of molecules to infer their
molecular features, and these can have a better predictive perform-
ance over the existing hand-crafted fingerprints in some applications
(33). These approaches offer improvement over raw enumeration
and filtering because they compress the search space. However, while
neural networks might make the navigation of chemical space more
efficient, the space is obscured and important contingent informa-
tion is not accessible (I, 2). One important question is how the cur-
rent structure of observable chemistry relates to the space of biology.
This is interesting because evolution has selected the machinery of
biochemistry over the past 4 billion years on Earth (1, 10, 11, 34). By
constructing the assembly tree from molecular structures, we will
be able to not only use a molecular-based route to explore the infor-
matijon used to assemble the molecules found in biology but also
infer which molecules are more likely to have shared pathways (i.e.,
infer the presence of new biological pathways). This is another
important window not only on how the process of evolution by ran-
dom selection leads to both conservation and reuse of biochemical
pathways but also in the generation of novelty.

RESULTS AND DISCUSSION

Establishing the theory of assembly spaces of molecules
Assembly theory (35, 36) quantifies the constraints required to
produce a molecule by measuring the minimum number of steps to
produce the molecular graph thereof. Here, we apply this approach
to explore the structure of chemical space and suggest a way to gen-
erate new compounds from the assembly space (see Fig. 1). In the
adenine example, we chose the four chemical bonds that make
molecule, namely, C—C, C=C, C—N, and C=N, as the basic building
blocks. We call these building blocks and the molecular structures
that will be produced therefrom the assembly building blocks and
call the set of all assembly building blocks the assembly pool. In an
assembly pool, any type of assembly building block is assumed to
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Fig. 1. Representations of an assembly pathway, by taking adenine as an example. (A) One of the many assembly pathways of adenine (it turns out to be the short-
est one, according to our MC algorithm, explained later). The assembly pool (shown inside the dashed boxes) evolves with each assembly step. The colors denote which
two assembly building blocks are used to make the new one (note that the color schemes are independent for each step). (B) The key-step representation of the assembly
pathway. (C) The joint process for each key assembly step, which is used to work out the multiset representation. (D) The multiset representation of this assembly path-
way. Strictly speaking, it should be written as {[1]", [2]'} where the superscript “1”is the multiplicity of this assembly building block, that is, after canceling out, it appears

once on the left-hand side of (C), but for simplicity, we only explicitly write down the multiplicity when it is not 1.

have infinite instances. One assembly step is precisely defined as the
three sequential operations: (i) take two assembly building blocks
from the assembly pool, (ii) join the two together in a way based on
the particular system in question (in this context, that is, to super-
impose certain atoms from the two building blocks to make a larger
molecular structure), and (iii) add the new composite building block
to the assembly pool. Once a sequence of the assembly steps can
successfully construct the target molecule, this is defined as an as-
sembly pathway for this molecule. Figure 1A shows one of many
assembly pathways of adenine, which has seven assembly steps after
which adenine is constructed and appears in the assembly pool and
gives an assembly index of 7. Last, the assembly space of a molecule

Liu et al., Sci. Adv. 2021; 7 : eabj2465 24 September 2021

refers to all the assembly building blocks included in the assembly
pathways. The assembly index of the shortest pathway to construct
amolecule is referred to as the molecular assembly number (MA) of
the molecule. The assembly pathway shown in Fig. 1A is the short-
est one, calculated out by the Monte Carlo (MC) algorithm that we
have developed (which is guaranteed to give the shortest assembly
pathway when the computing time is sufficiently long; see section
S3 for details), and adenine’s MA is thus 7.

In assembly pathways, the order of some steps can be switched
without changing the length of the pathway, which leads to a com-
binatorically large number of trivial pathways that all have the same
number of steps. For instance, as the pathway shown in Fig. 1A
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starts from building block [3] to make building block [6], we can
either add a C—C bond to [3], then a C=C, and lastly add building
block [2], just as the figure shows, or we can add [2] first, then a
C=C, and, last, a C—C, which leads to another pathway. Taking
Fig. 1A as an example, building block [1] must be made before [2]
and [3] because [1] is used to make [2] and [3]; by the same logic,
building block [2] must be made before [3] and [6] because [2] is
used to make them. We can use these properties to represent as-
sembly pathways without ambiguity by focusing on the steps in
which order matters. We call those special building blocks that de-
fine the hierarchical relationships among the chemical structures
the key assembly building blocks (they are also the assembly build-
ing blocks that are used more than once in the pathway) and their
corresponding steps as the key assembly steps.

Therefore, we can represent a pathway in terms of key steps,
which eliminates all the trivial information. For example, Fig. 1B is
the key-step representation of the pathway shown in Fig. 1A, and
the key building blocks are [1] and [2]. The number of key building
blocks can be elucidated from the key-step representation. We can
explicitly write down the joint process for each key step and then
remove the building blocks that appear on both sides (Fig. 1C). The
building blocks left over constitute the target molecule nonrepeti-
tively. Specifically, the target molecule adenine can be made from
these chemical bonds and structures nonrepetitively and by the
least number of assembly steps. The information of the basic build-
ing blocks is trivial and can thus be omitted. So, we lastly obtained
the multiset representation of this assembly pathway, as shown in
Fig. 1D (see section S2). The multiset representation can be readily
determined from the key-step representation without ambiguity
and vice versa. The latter emphasizes the hierarchical relationship
between the building blocks, while the former emphasizes the in-
formation of constituents and provides a compact summary of the
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assembly space associated with this pathway. An assembly pathway
of amolecule does not necessarily correspond to a realistic sequence
of chemical reactions that produce this molecule. Instead, the short-
est assembly pathway bounds the likelihood of the molecule forming
probabilistically (which means that if the shortest assembly pathways
of two molecules overlap, then they are likely to have shared synthetic
pathways). No matter which methods or synthetic approaches are
used, there will be no shorter way than this ideal one, which makes
it an intrinsic property of a molecule.

Molecular assembly trees
The concept of assembly pathways and spaces can be naturally ap-
plied to two molecules, which allows us to look at the shortest as-
sembly pathways that construct both simultaneously. In general, the
shared shortest assembly pathway of A and B is not the union of the
individual shortest assembly pathways of A and B. As an example,
consider adenine and another nucleobase thymine (Fig. 2A). The
shortest pathway of adenine alone is indicated by the blue dashed
arrows on the left whose MA is 7 (the same pathway as in Fig. 1).
The shortest pathway of thymine alone is indicated by the red
dashed arrows on the right, which can be written in multiset repre-
sentation as {[7]}, and its MA is calculated to be 6. However, the
shortest assembly pathway to make adenine and thymine altogether
is indicated by the black dashed arrows in the middle, which does
not overlap with either of the shortest pathways. It is {[8]% [9]} in
multiset representation (where the superscript “2” is the multiplici-
ty of [8]), and its pathway index is calculated to be 12, which is
smaller than 7 + 6, the sum of the two individual MAs. Molecular
assembly theory can be extended further to three or more mole-
cules, which allows us to look at the shortest assembly pathways that
construct a group of molecules. The multimolecular assembly spaces
tend to have a tree-like structure where different branches lead to
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Fig. 2. Two exemplified molecular assembly trees. (A) The assembly space of adenine and thymine. The shortest assembly pathway for adenine alone is indicated by
the blue dashed arrows, while the shortest assembly pathway for thymine alone is indicated by the red dashed arrows. The shortest assembly pathway to make adenine
and thymine altogether is the one indicated by the black dashed arrows. (B) A molecular assembly tree for A, G, T, U, and C, which can also be written as {[2, 10, 11, 12,
131}, whose index is calculated to be 16. Note that, in both (A) and (B), the colors are just used to help the reader recognize the building blocks, and the color schemes are
independent; we also omitted the arrows starting from the basic building blocks for a better visualization.
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different molecules (see Fig. 2A), but the number of key building
blocks is still relatively small. Therefore, we refer to the shortest
assembly pathways to make a group of molecules altogether as the
molecular assembly tree (assembly tree for short) thereof and refer
to its index as assembly tree MA.

As an example, we built an assembly tree for the five nucleobases:
adenine (A), guanine (G), thymine (T), uracil (U), and cytosine (C).
We first extended the MC algorithm that we have developed for a
single molecule to a group of molecules (see details in section S4).
We then use this extended algorithm to compute the assembly tree
and then visualize the tree manually, as shown in Fig. 2B (see sec-
tion S4.3). The MA is 16, but it takes 43 steps to build the molecules
bond by bond, and the minimum number of steps to construct
them separately using an assembly process is 33. This relatively low
MA reflects the fact that they share lots of common structures (even
the common structures share quite a few common substructures),
resulting in the hierarchy shown by the assembly tree, which rep-
resents a highly related subset of chemical space.

Biomolecules

For this study, we picked a dozen vital biomolecules to construct
their assembly tree, including the five nucleobases (A, G, T, C, and U),
pyruvate [a key intermediate in metabolic pathways across various
organisms (37)], and citrate [an intermediate of the vital metabolic
pathway, the Krebs cycle, used by all aerobic organisms to release

energy (38, 39)]. In addition, we included p-ribose [the carbohydrate
that serves as the backbone of RNA among various other functions
(40, 41)], nicotinamide adenine dinucleotide [NAD?*; a vital
cofactor that carries electrons from one reaction to another (42)],
adenosine diphosphate (ADP), adenosine triphosphate (ATP), and a
symbolic RNA molecule. As we see in Fig. 3, there are lots of struc-
tures that are shared. We can imagine that as we include more bio-
molecules in the tree (e.g., various proteins and RNA and DNA
sequences), more structures will be shared, and the tree will grow
deeper and deeper but without growing much wider (i.e., having
more hierarchical layers but not many nonrelated key blocks being
added to the tree). This potentially “narrow” assembly tree is an in-
dication that all of the vital biomolecules involved in extant life on
Earth is not arbitrary but a consequence of millions of years of
evolution.

In origin of life studies, one central problem is that most biomol-
ecules are complex and thus seem very unlikely to emerge de novo
from prebiotic chemistry, while life requires them altogether to
function properly. An important clue that we gain from this study is
that lots of chemical substructures are shared among these vital bio-
molecules. Hence, it can be argued that the set of processes produc-
ing these molecules together, as a set, could have been smaller than
if they were produced de novo individually because they could have
shared common pathways. The closer the biomolecules are in the
assembly tree (i.e., they are more related), the easier it is to access
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Fig. 3. The assembly tree of a dozen vital biomolecules, including the five nucleobases (A, G, T, C, and U), pyruvate, citrate, o-ribose, NAD"*, ADP, ATP, and a

symbolic RNA molecule.

Liu et al., Sci. Adv. 2021; 7 : eabj2465 24 September 2021

40f10

GZ0Z ‘TT 4800100 U0 BI080US 105 MMM//:SANY WO.J PaPE0 lUMOC



SCIENCE ADVANCES | RESEARCH ARTICLE

these compounds. This is arguably why biomolecules exploited by
extant life appear close in the assembly tree; otherwise, they would
be too complex to emerge individually. For example, the fact that
the five nucleobases AGTCU are closely related in the assembly tree
indicates that it is not arbitrary nor a result of a frozen event that
they serve as the fundamental units of the genetic code across all life
on Earth and that the molecules may have been incorporated into
protobiological systems because of their structural relatedness. We
tested this idea by building assembly trees for alternated nucleobases
(see section S5 for details). We found that MAs of alternated trees
are always much higher (ranging from 31 to 38) than the one in
reality, which is 16, as mentioned in the previous section. This
analysis only indicates that the extant set of nucleobases were selected
because of their relatedness, but why nature selects this particular set is
another question since there could be many such sets. This intriguing
and important question requires a much wider exploration of chemi-
cal space, yet we believe our methods provide a useful tool for fram-
ing this question.

Gene sequences

So far, we have focused on constructing assembly trees for mole-
cules, but our theory can equally be applied to gene sequences. We
take one hypothetical gene sequence X (60 bases; Fig. 4) as an example
to illustrate how we can make use of the compressed information
carried by X’s assembly tree to reconstruct itself with less efforts.
The naive method is to add one base at one time, and then, 59 steps
in total are needed to construct X, but notice that some segments
are repeated multiple times. If it is possible to produce these repeti-
tive segments beforehand, then it is possible to take them directly
and combine them with other segments in a precise way to obtain X,
and this requires less than 59 steps [as producing repetitive segments is
relatively easy (43), e.g., polymerase chain reaction, the reconstruction
of the original sequence takes less efforts than the naive method]. As
the assembly tree can filter all of the repetitive and redundant infor-
mation (i.e., record the information of the sequence in the most
compressed way), the information of this “precise way” is completely
stored in the assembly tree. Then, we build X’s assembly tree, as
shown in Fig. 4 (in this example, we only deal with one sequence X,
and its assembly tree reduces to its shortest assembly pathway). Note

The original sequence X (60 letters):
I CGTACGCTCGACCGGCAGGACCGGTTGACGGACCGGTTGACGCTCGACCGGGACCGGACG

I ACGCTCGACCGG

GACCGGI The original sequence X can be

[«

[ (] ° (]
A T G C

losslessly compressed into
sequence Y (36 letters):

CG_TTG_A1_GAC1G_3CTC4_1T5CAG42342543

Fig. 4. The assembly tree of one hypothetical gene sequence X (as, here, we
only deal with one sequence X, it reduces to its shortest assembly pathway in
the key-step representation). Here, we use nucleobases as the basic building
blocks rather than chemical bonds in the molecule cases. Thus, we explicitly draw
those nucleobases at the bottom for clarification.
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that in this gene sequence case, we use nucleobases as the basic building
blocks rather than chemical bonds as in the molecule cases.

Before reconstructing, we introduce a way to compress the infor-
mation hold in the assembly tree into a single string, which would be
very useful in future studies, as the assembly tree of genomes would
be huge and directly storing the tree structure is neither convenient
nor efficient (note that while preserving the assembly tree informa-
tion is our priority, we are not intended to defeat any sophisticated
data compression technique per se). The assembly tree in Fig. 4 can
be rewritten as CG_TTG_A1_GACI1G_3CTC4_1T5CAG42342543,
denoted as Y. Now, we can reconstruct X based on Y. The first step
is to construct CG by simply combining the individual bases C and
G (one step) and construct TTG by combining the individual bases
T, T, and G (two steps). Second, construct A1, where “1” stands for
the first segment in Y, which is CG. Thus, we only need one step to
obtain ACG since CG has been constructed before. Third, construct
GACIG, where we can reuse “1” again, and we thus need four steps.
Fourth, construct 3CTC4, where we can reuse “3” (Al, the third
segment in Y) and “4” (GACIG, the fourth segment in Y), and we
thus need four steps. Last, we can construct the original sequence X
based on the last part of Y, namely, “1T5CAG42342543” where the
integer stands for the corresponding segment that has been obtained
before and can thus be reused. Thus, we need 13 steps here. In total,
weneed 1 +2+1+4+4+ 13 =25 steps, which is much less than
the naive 59 steps. Last, to quantify the increase of information from
the original sequence X (60 letters) to the lossless and compressed
version Y (36 letters), we can use Shannon entropy (44, 45), a widely
used quantity to describe the information of a string. Shannon entropy
H of a string X (with n letters) is defined as H(X) = — Y.p(x) - logop(x),
where p(x) is the probability that the letter x appears in this sequence
X, which is set to be equal to the times x appears in X divided by
n, and the sum goes through every distinct letter. Therefore, we ob-
tained that Shannon entropy of the original sequence H(X) is 1.851,
while H(Y) is 3.251, increased by 1.76 times.

We do think that the application of assembly theory to gene as-
sembly has potential application to not only building new routes to
engineer synthetic genomes by taking a series of genes, finding
the common parts, and then finding the minimal route to assemble
these parts to access all of the desired genes. Not only could this
be used to efficiently build new function, but it also has promise to
explore how evolution has reused genetic motifs beyond the current
modular understanding and perhaps find more complex and con-
served routes for the propagation of genetic information across dif-
ferent genes.

Plasticizers

Plasticizers are added to polymers and formulations to make them
more plastic, to decrease viscosity and friction, and to increase flex-
ibility (46), but they can leach into the environment. This is a prob-
lem since these compounds have been shown to be toxic (47). One
big issue is that, in general, the evaluation of specific effects and
prevalence of plasticizer molecules in the environment is hard, as so
many different types are in use and many degradation pathways
exist (47). This means that potentially vast numbers of molecules
related to the plasticizer parent are present in the environment, pos-
ing similar or even greater health risks than the parent. However, by
exploring the assembly tree of plasticizer molecules (see Fig. 5), it
might be possible to map the molecules that are potentially contam-
inated and even identify unknown or unexpected molecules.
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Fig. 5. The assembly tree of 10 commonly used plasticizers including BBP, DEHP, DEHA, and others. For a clearer visualization, all plasticizers are made dimmer than

other parts of the tree. The most central structures are highlighted green.

Here, we built the assembly tree of 10 commonly used plasticizers
including BBP (benzyl butyl phthalate), DEHP (di-2-ethylhexyl
phthalate), DEHA [bis(2-ethylhexyl) adipate], and others. As seen
from Fig. 5, these 10 seemingly distinct molecules share lots of com-
mon structures (i.e., key assembly building blocks), which are also
highly related. These 10 relatively large plasticizers are constructed
by only a dozen of these key building blocks. In particular, the four
central structures highlighted green directly or indirectly connect to
most of them (except for tricresyl phosphate) and are highly related
themselves. We can thus imagine that if we can detect and identify
these central/characteristic chemical structures and fragments in an
environment [e.g., using the mass spectrometry technique for as-
sembly theory (36)], then we should be able to track down the par-
ent molecules and substantially narrow down the list of suspected
contaminants. Nevertheless, it should be noticed that we only intro-
duced the concept here. The development of a reliable detection
method would require a massive tree inclusive of all relevant com-
pounds both in terms of possible pollutants and products expected
in the absence of pollution based on the environmental conditions.

Opiates

The search of opiate-based chemical space is an important test case
since the family of compounds is highly distinctive with well-defined
modular parts. One idea could be to use assembly trees to explore a

Liu et al., Sci. Adv. 2021; 7 : eabj2465 24 September 2021

set of potentially biochemically accessible new structures, as well
as deduce what contingent information is present therein, and use
them for finding new molecular targets. To do this, we computed the
assembly tree of 10 compounds in the family of opiates (Fig. 6):
Some of them are found in the opium plant (morphine, codeine,
thebaine, and papaverine); some are synthetic opioids (fentanyl,
remifentanil, methadone, pethidine, and diamorphine, also known
as heroin), and the last one is salvinorin A, which is a x-opioid re-
ceptor agonist (48) found in the Salvia divinorum plant but might
not be properly considered as an opioid. The assembly tree captures
some known features of the chemical space associated with these
compounds: (i) Morphine, codeine, thebaine, and diamorphine are
clustered in one place, with a major structure shared. (ii) Fentanyl
and remifentanil are close in the tree, as they share a large substruc-
ture. (iii) In contrast, methadone, pethidine, and papaverine are not
as closely related, sharing just a relatively small benzyl moiety. (iv)
Salvinorin A is distinct from others, as it only connects with other
compounds via very small structures.

By computing the assembly tree of these compounds, we ob-
tained not only the shortest but also other longer assembly pathways
(another output of our algorithm; see section S4). The key building
blocks included in all these pathways, constituting the assembly space
of these compounds, are highly related and encode their structural
information. Given that the molecules connected by these graphs
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Fig. 6. The assembly tree of nine compounds in the family of opiates and one k-opioid receptor agonist (salvinorin A). Some of these opiates are natural (mor-
phine, codeine, thebaine, and papaverine), while others are synthetic (fentanyl, remifentanil, methadone, pethidine, and diamorphine, also known as heroin). For a

clearer visualization, all opioids are made dimmer than other parts of the tree.

are real and functionally interesting, we think it could be fruitful to
see if navigating the trajectories defined by these pathways could
lead to the discovery of new potential drug candidates. The idea to
explore the space of natural products by fragmenting them is not new
and has been tried before (49-51). For instance, the fragment-based
drug discovery (FBDD) is a de novo generation strategy that uses
fragments of known bioactive compounds to obtain new drug-like
molecules (52, 53). The idea behind FBDD is that functionally com-
parable molecules share structural similarities; therefore, selecting
fragments from molecules would propagate their properties, such as
biological activity, to the newly generated compounds (54-56).
Compared to the size of the comparable chemical space, the as-
sembly space of these compounds is substantially smaller. We used
the MC method to compute the pathways, so the size of the assembly
space changes along with the number of MC steps. We found that
the size of the assembly space is approximately 1500, which was con-
sistent even as we increase the number of MC steps up to the num-
ber that is far larger than the number needed to have very short
pathways found. In this case, the smallest MA is found to be 105,
while the total number of bonds in these 10 compounds is 268 (see
details in section S6 for how the size of the assembly space changes
with the number of MC steps). This small number (~1500) is not be-
cause our approach or our program cannot find more unique structures,
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but the assembly space itself is intrinsically small since it only
includes structures that are shared by at least two compounds, in-
stead of any feasible structure or fragment. For a computationally
tractable comparison, we used MOLGEN 5.0 (57) to calculate the
total number of structures possible using a total of 10 carbon, nitrogen,
oxygen, or sulfur species, which amounts to over 10° unique possibili-
ties and is much larger than the assembly space here. As morphine
has 21 nonhydrogen atoms, the number of possible structures will
be much larger than 10°.

Next, we used the assembly trees for the purpose of de novo mol-
ecule generation by reconnecting the elements from the assembly
pool. Critically, the products of these “reassembly” are closely related
to the parent compounds, both structurally and in terms of functional
properties. This means that the reassembly process locally explores
the chemical space of the input compounds. To do this, we have
implemented a method known as the Reassembler (see section S7
for details). Briefly, it connects the assembly pool elements through
the same pattern in which they were disconnected from their parent
compound(s). This is effectively the reverse process used to gener-
ate the tree in the first place. To prove that generated molecules
retain similarity to the parent compound(s), we have generated the
assembly pool of known natural opiates [in contrast to the 10 com-
pounds in Fig. 6, here, we used codeine, morphine, noscapine, oripavine,
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Fig. 7. Comparison between natural opiates and opiate-like molecules generated using Reassembler. (A) shows the six opiates used to generate the assembly pools, and
(B) shows six new opiate-like molecules generated from those assembly pools. See section S7.3 for more detailed information on more new compounds.

papaverine, and thebaine (Fig. 7A) to avoid bias]. We used this as-
sembly pool to generate 1000 opiate-like compounds, and an exam-
ple set of these molecules is shown in Fig. 7B.

For comparison purposes, we also generated 1000 random com-
pounds only from the bonds present in the opiates (C—C, C=C,
C—0, C=0, C—N, and C=N). For consistency, we have limited the
molecular weight of all generated molecules and the unsaturation
levels in the same range as the parent opiates, i.e., 281 to 368 Da and
9 to 12 degrees of unsaturation. To ensure that the generated mole-
cules were at least chemically plausible, they were passed through
two filters: The first filter uses SMARTS (SMILES arbitrary target
specification) patterns that are commonly used to detect forbidden
structures/structural motifs (57), while the other is based on RDKit
conformation optimizer (see section S7) (58). If any of the forbid-
den structures were present or no conformation could be found at
all, then the molecule was rejected, and another was generated in
its place. As shown in Fig. 8A, molecules generated from assembly
pools showed significantly higher similarity to opiates than the ran-
dom compounds (we also compared our result with the molecules
generated from arbitrary substructural fragments; see section S8 for
details, where our result is still better). Furthermore, they also exhib-
ited similar levels of drug-likeness to the opiates, measured using
the “quantitative estimate of drug-likeness (QED)”, as opposed to
random molecules which were significantly less drug-like (see Fig. 8B),
showing that properties of parent molecules were retained just as
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well as the structural similarities. While two of the used parent opi-
ates, morphine and oripavine, may look almost identical to the human
eye, the seemingly small differences (i.e., morphine cyclohexene
ring versus oripavine cyclohexadiene ring with extra methylation
on its hydroxyl group) determine significant differences in their
properties. Morphine is a common analgesic, while oripavine is not
clinically useful because of its toxicity and low therapeutic index. This
suggests that, in the chemical space, the distance between these molecules
might be greater than the apparent structural similarities alone.
Therefore, a more discrete measure is needed to capture their
overall similarity level. In the example of assembly-opitate-1 (AP1)
(see Fig. 7B), it has a discrete structure comprising a skeleton that
combines the assembly spaces of the opiate-based space surround-
ing the known opiates, such as morphine or codeine. Thus, it is easy
to see the structural similarities between AP1 and morphine as
shown by the Tanimoto similarity score ca. 0.24. Furthermore, the
QED is 0.72, while the QED of morphine is 0.70, which is notably
close. In addition, the logP of AP1 is 2.42, while morphine logP is
1.20. Nevertheless, the logP of morphine’s close relative, oripavine,
is 2.12, which is close to our hypothetical AP1. Thus, our hybrid AP1
seems to occupy a position in chemical space intermediate between
morphine and oripavine. The compound has similarity to most
opiates, including codeine, thebaine, and even noscapine, thereby
occupying the intermediate space between all the opiates. This is
promising since these molecules could be reasonably considered as
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Fig. 8. The comparison of 1000 molecule sets generated from opiate assembly pool (blue) and generated from individual bonds (red). (A) According to the
Tanimoto similarity measure, products of assembly pools were significantly more similar to the parent molecules (opiates) than randomly generated products. (B) QED
shows that the assembly products, unlike their random counterparts, showed similar level of drug-likeness to opiates (denoted by gray dotted line). (C) On the basis of
logP estimation, assembly products usually had higher logP than opiates (denoted by gray dotted line), while random molecules usually had lower logP.

novel synthetic targets to be made (their constrained skeletons are
themselves a hard target) and appear to be the first in a line of arti-
ficial natural products. A key question is whether it is cost effective
to generate practical synthetic approaches to such molecules and to
constrain the search of the assembly space around molecules that
might be themselves easily made.

Our results demonstrate how the assembly theory can be used to
generate compressed representations of chemical space while retain-
ing the relevant chemical and structural information. This means
that it is possible to show how assembly spaces can be extended to
multiple compounds, and we introduced a notation to effectively
represent the key features of such assembly spaces. By developing
an MC algorithm to calculate the shortest assembly pathways of a
single molecule, we also show how it is possible to generate the
assembly tree of any collection of molecules. We demonstrated this
methodology in four distinct use cases, prebiotic chemistry, genetics,
environmental chemistry, and drug discovery. The assembly tree of
biomolecules shows that those vital molecules used in biology rep-
resent a compressed subset of the possible compounds, suggesting
that they were subjected to evolutionary optimization. By analyzing
the assembly space of plasticizers, it was possible to identify struc-
tural motifs common to many different pollutants. These motifs can
be used as general-purpose signals to identify entire classes of pollut-
ants in complex environmental samples. The analysis of the opioids
provides a map to future drug development, by extracting the hierar-
chical relationships between compounds and identifying key com-
ponents of possible drug candidates. The analysis of gene sequences
demonstrates how assembly spaces can provide a lossless compres-
sion of sequences that retains the repeated motifs, demonstrating
how complex gene sequences could be reconstructed from minimal
genetic inputs. These four different case studies demonstrate the
wide applicability of assembly trees as a tool in a diverse set of disci-
plines. Last, we developed a scheme to take a target set of molecules
as templates for silico discovery and explore the enumeration of these
targets using random and assembly tree—constrained approaches
(Figs. 7 and 8). The evaluation of the properties provides a useful
test of how assembly trees can capture information encoded with a
chemical network constructed using external constraints from either
biochemistry or technology. We hope that by exploring these trees,
with information from other sources about what molecules are
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synthetically feasible, it will be possible to develop new routes to
structure expansion that encode the transformations of chemical
synthesis.

MATERIALS AND METHODS

The MC algorithms described in this manuscript were implemented
in C++ and can be compiled using Visual Studio 2019. This code
relied on the InChI standard libraries found at www.inchi-trust.org/.
The Reassembler approach to generate new compounds from assem-
bly pools was implemented in Python (with RDKit). Details on the
implementation and instructions on how to use the software can be
found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2465
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