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C H E M I S T R Y

Exploring and mapping chemical space with molecular 
assembly trees
Yu Liu, Cole Mathis, Michał Dariusz Bajczyk, Stuart M. Marshall, Liam Wilbraham, Leroy Cronin*

The rule-based search of chemical space can generate an almost infinite number of molecules, but exploration of 
known molecules as a function of the minimum number of steps needed to build up the target graphs promises 
to uncover new motifs and transformations. Assembly theory is an approach to compare the intrinsic complexity 
and properties of molecules by the minimum number of steps needed to build up the target graphs. Here, we 
apply this approach to prebiotic chemistry, gene sequences, plasticizers, and opiates. This allows us to explore 
molecules connected to the assembly tree, rather than the entire space of molecules possible. Last, by developing 
a reassembly method, based on assembly trees, we found that in the case of the opiates, a new set of drug candi-
dates could be generated that would not be accessible via conventional fragment-based drug design, thereby 
demonstrating how this approach might find application in drug discovery.

INTRODUCTION
Chemical space is populated by a vast range of compounds, which 
can be characterized by their molecular composition, formula, graph 
representation, and reactivity (1, 2). The generation of molecules via 
their graphs can be enumerated to give an unimaginably vast number of 
at least 1060 small organic molecules (1, 3, 4), but this is unrealistic, 
as many of these molecules might be unstable or inaccessible syn-
thetically. However, when exploring biochemistry, only a few hun-
dred different types of “unique” small molecules are needed by the 
simplest living organisms (1, 5), indicating that the chemical space 
relevant to biology on Earth is a tiny fraction of chemical space that 
is possible (6, 7). For example, many of the related structures be-
tween these known compounds are undiscovered and unknown 
(e.g., opiates and cannabinoids are found to occur in related clusters 
of structures but no cross between these structure types are known). 
The issue therefore arises about how the space of molecules can be 
effectively searched (1, 2, 8) and what constrains molecules to be 
both thermodynamically possible and biologically accessible (2, 9–11) 
because although many molecules are physically possible, the num-
ber of molecules accessible by the current machinery of biology is 
smaller (9, 12–15).

One way to explore the universe of molecules is to construct a 
chemical space as a dataset, e.g., GDB-17 database (16, 17), Drug-
Bank (18), and PubChem (19), and then navigate the dataset using 
molecular descriptors (20–23). Searching these databases is in-
efficient because it requires exhaustively enumerating [or Bayesian 
optimization (24)] and screening molecules for desirable proper-
ties. Similarly, it is possible to iteratively generate chemical subspaces, 
followed by filtering unwanted structures, until desired molecules 
are obtained. This can be done using a genetic algorithm (25, 26), 
extrapolation techniques (27, 28), or even using human intuition (29). 
However, given the relative sizes of possible chemical space, com-
pared to the number of interesting molecular structures, it is not clear how 
comprehensive any of these approaches will be. Recently, machine 
learning and statistical techniques have been introduced into the navi-
gation of chemical space (30, 31). For example, hundreds of thousands 

of existing chemical structures were used to train a deep neural 
network so that each molecule can be assigned to a set of discrete 
coordinates in the continuous latent space of the neural network. 
Navigating within this discrete chemical space corresponds to nav-
igating in the continuous latent space, which is much easier compu-
tationally (32). Alternatively, a convolutional neural network can be 
trained directly on graph representations of molecules to infer their 
molecular features, and these can have a better predictive perform
ance over the existing hand-crafted fingerprints in some applications 
(33). These approaches offer improvement over raw enumeration 
and filtering because they compress the search space. However, while 
neural networks might make the navigation of chemical space more 
efficient, the space is obscured and important contingent informa-
tion is not accessible (1, 2). One important question is how the cur-
rent structure of observable chemistry relates to the space of biology. 
This is interesting because evolution has selected the machinery of 
biochemistry over the past 4 billion years on Earth (1, 10, 11, 34). By 
constructing the assembly tree from molecular structures, we will 
be able to not only use a molecular-based route to explore the infor-
mation used to assemble the molecules found in biology but also 
infer which molecules are more likely to have shared pathways (i.e., 
infer the presence of new biological pathways). This is another 
important window not only on how the process of evolution by ran-
dom selection leads to both conservation and reuse of biochemical 
pathways but also in the generation of novelty.

RESULTS AND DISCUSSION
Establishing the theory of assembly spaces of molecules
Assembly theory (35, 36) quantifies the constraints required to 
produce a molecule by measuring the minimum number of steps to 
produce the molecular graph thereof. Here, we apply this approach 
to explore the structure of chemical space and suggest a way to gen-
erate new compounds from the assembly space (see Fig. 1). In the 
adenine example, we chose the four chemical bonds that make 
molecule, namely, C─C, C═C, C─N, and C═N, as the basic building 
blocks. We call these building blocks and the molecular structures 
that will be produced therefrom the assembly building blocks and 
call the set of all assembly building blocks the assembly pool. In an 
assembly pool, any type of assembly building block is assumed to 
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have infinite instances. One assembly step is precisely defined as the 
three sequential operations: (i) take two assembly building blocks 
from the assembly pool, (ii) join the two together in a way based on 
the particular system in question (in this context, that is, to super-
impose certain atoms from the two building blocks to make a larger 
molecular structure), and (iii) add the new composite building block 
to the assembly pool. Once a sequence of the assembly steps can 
successfully construct the target molecule, this is defined as an as-
sembly pathway for this molecule. Figure 1A shows one of many 
assembly pathways of adenine, which has seven assembly steps after 
which adenine is constructed and appears in the assembly pool and 
gives an assembly index of 7. Last, the assembly space of a molecule 

refers to all the assembly building blocks included in the assembly 
pathways. The assembly index of the shortest pathway to construct 
a molecule is referred to as the molecular assembly number (MA) of 
the molecule. The assembly pathway shown in Fig. 1A is the short-
est one, calculated out by the Monte Carlo (MC) algorithm that we 
have developed (which is guaranteed to give the shortest assembly 
pathway when the computing time is sufficiently long; see section 
S3 for details), and adenine’s MA is thus 7.

In assembly pathways, the order of some steps can be switched 
without changing the length of the pathway, which leads to a com-
binatorically large number of trivial pathways that all have the same 
number of steps. For instance, as the pathway shown in Fig. 1A 

Fig. 1. Representations of an assembly pathway, by taking adenine as an example. (A) One of the many assembly pathways of adenine (it turns out to be the short-
est one, according to our MC algorithm, explained later). The assembly pool (shown inside the dashed boxes) evolves with each assembly step. The colors denote which 
two assembly building blocks are used to make the new one (note that the color schemes are independent for each step). (B) The key-step representation of the assembly 
pathway. (C) The joint process for each key assembly step, which is used to work out the multiset representation. (D) The multiset representation of this assembly path-
way. Strictly speaking, it should be written as {[1]1, [2]1} where the superscript “1” is the multiplicity of this assembly building block, that is, after canceling out, it appears 
once on the left-hand side of (C), but for simplicity, we only explicitly write down the multiplicity when it is not 1.
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starts from building block [3] to make building block [6], we can 
either add a C─C bond to [3], then a C═C, and lastly add building 
block [2], just as the figure shows, or we can add [2] first, then a 
C═C, and, last, a C─C, which leads to another pathway. Taking 
Fig. 1A as an example, building block [1] must be made before [2] 
and [3] because [1] is used to make [2] and [3]; by the same logic, 
building block [2] must be made before [3] and [6] because [2] is 
used to make them. We can use these properties to represent as-
sembly pathways without ambiguity by focusing on the steps in 
which order matters. We call those special building blocks that de-
fine the hierarchical relationships among the chemical structures 
the key assembly building blocks (they are also the assembly build-
ing blocks that are used more than once in the pathway) and their 
corresponding steps as the key assembly steps.

Therefore, we can represent a pathway in terms of key steps, 
which eliminates all the trivial information. For example, Fig. 1B is 
the key-step representation of the pathway shown in Fig. 1A, and 
the key building blocks are [1] and [2]. The number of key building 
blocks can be elucidated from the key-step representation. We can 
explicitly write down the joint process for each key step and then 
remove the building blocks that appear on both sides (Fig. 1C). The 
building blocks left over constitute the target molecule nonrepeti-
tively. Specifically, the target molecule adenine can be made from 
these chemical bonds and structures nonrepetitively and by the 
least number of assembly steps. The information of the basic build-
ing blocks is trivial and can thus be omitted. So, we lastly obtained 
the multiset representation of this assembly pathway, as shown in 
Fig. 1D (see section S2). The multiset representation can be readily 
determined from the key-step representation without ambiguity 
and vice versa. The latter emphasizes the hierarchical relationship 
between the building blocks, while the former emphasizes the in-
formation of constituents and provides a compact summary of the 

assembly space associated with this pathway. An assembly pathway 
of a molecule does not necessarily correspond to a realistic sequence 
of chemical reactions that produce this molecule. Instead, the short-
est assembly pathway bounds the likelihood of the molecule forming 
probabilistically (which means that if the shortest assembly pathways 
of two molecules overlap, then they are likely to have shared synthetic 
pathways). No matter which methods or synthetic approaches are 
used, there will be no shorter way than this ideal one, which makes 
it an intrinsic property of a molecule.

Molecular assembly trees
The concept of assembly pathways and spaces can be naturally ap-
plied to two molecules, which allows us to look at the shortest as-
sembly pathways that construct both simultaneously. In general, the 
shared shortest assembly pathway of A and B is not the union of the 
individual shortest assembly pathways of A and B. As an example, 
consider adenine and another nucleobase thymine (Fig. 2A). The 
shortest pathway of adenine alone is indicated by the blue dashed 
arrows on the left whose MA is 7 (the same pathway as in Fig. 1).

The shortest pathway of thymine alone is indicated by the red 
dashed arrows on the right, which can be written in multiset repre-
sentation as {[7]}, and its MA is calculated to be 6. However, the 
shortest assembly pathway to make adenine and thymine altogether 
is indicated by the black dashed arrows in the middle, which does 
not overlap with either of the shortest pathways. It is {[8]2, [9]} in 
multiset representation (where the superscript “2” is the multiplici-
ty of [8]), and its pathway index is calculated to be 12, which is 
smaller than 7 + 6, the sum of the two individual MAs. Molecular 
assembly theory can be extended further to three or more mole-
cules, which allows us to look at the shortest assembly pathways that 
construct a group of molecules. The multimolecular assembly spaces 
tend to have a tree-like structure where different branches lead to 

Fig. 2. Two exemplified molecular assembly trees. (A) The assembly space of adenine and thymine. The shortest assembly pathway for adenine alone is indicated by 
the blue dashed arrows, while the shortest assembly pathway for thymine alone is indicated by the red dashed arrows. The shortest assembly pathway to make adenine 
and thymine altogether is the one indicated by the black dashed arrows. (B) A molecular assembly tree for A, G, T, U, and C, which can also be written as {[2, 10, 11, 12, 
13]}, whose index is calculated to be 16. Note that, in both (A) and (B), the colors are just used to help the reader recognize the building blocks, and the color schemes are 
independent; we also omitted the arrows starting from the basic building blocks for a better visualization.
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different molecules (see Fig. 2A), but the number of key building 
blocks is still relatively small. Therefore, we refer to the shortest 
assembly pathways to make a group of molecules altogether as the 
molecular assembly tree (assembly tree for short) thereof and refer 
to its index as assembly tree MA.

As an example, we built an assembly tree for the five nucleobases: 
adenine (A), guanine (G), thymine (T), uracil (U), and cytosine (C). 
We first extended the MC algorithm that we have developed for a 
single molecule to a group of molecules (see details in section S4). 
We then use this extended algorithm to compute the assembly tree 
and then visualize the tree manually, as shown in Fig. 2B (see sec-
tion S4.3). The MA is 16, but it takes 43 steps to build the molecules 
bond by bond, and the minimum number of steps to construct 
them separately using an assembly process is 33. This relatively low 
MA reflects the fact that they share lots of common structures (even 
the common structures share quite a few common substructures), 
resulting in the hierarchy shown by the assembly tree, which rep-
resents a highly related subset of chemical space.

Biomolecules
For this study, we picked a dozen vital biomolecules to construct 
their assembly tree, including the five nucleobases (A, G, T, C, and U), 
pyruvate [a key intermediate in metabolic pathways across various 
organisms (37)], and citrate [an intermediate of the vital metabolic 
pathway, the Krebs cycle, used by all aerobic organisms to release 

energy (38, 39)]. In addition, we included d-ribose [the carbohydrate 
that serves as the backbone of RNA among various other functions 
(40,  41)], nicotinamide adenine dinucleotide [NAD+; a vital 
cofactor that carries electrons from one reaction to another (42)], 
adenosine diphosphate (ADP), adenosine triphosphate (ATP), and a 
symbolic RNA molecule. As we see in Fig. 3, there are lots of struc-
tures that are shared. We can imagine that as we include more bio-
molecules in the tree (e.g., various proteins and RNA and DNA 
sequences), more structures will be shared, and the tree will grow 
deeper and deeper but without growing much wider (i.e., having 
more hierarchical layers but not many nonrelated key blocks being 
added to the tree). This potentially “narrow” assembly tree is an in-
dication that all of the vital biomolecules involved in extant life on 
Earth is not arbitrary but a consequence of millions of years of 
evolution.

In origin of life studies, one central problem is that most biomol-
ecules are complex and thus seem very unlikely to emerge de novo 
from prebiotic chemistry, while life requires them altogether to 
function properly. An important clue that we gain from this study is 
that lots of chemical substructures are shared among these vital bio-
molecules. Hence, it can be argued that the set of processes produc-
ing these molecules together, as a set, could have been smaller than 
if they were produced de novo individually because they could have 
shared common pathways. The closer the biomolecules are in the 
assembly tree (i.e., they are more related), the easier it is to access 

Fig. 3. The assembly tree of a dozen vital biomolecules, including the five nucleobases (A, G, T, C, and U), pyruvate, citrate, d-ribose, NAD+, ADP, ATP, and a 
symbolic RNA molecule. 
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these compounds. This is arguably why biomolecules exploited by 
extant life appear close in the assembly tree; otherwise, they would 
be too complex to emerge individually. For example, the fact that 
the five nucleobases AGTCU are closely related in the assembly tree 
indicates that it is not arbitrary nor a result of a frozen event that 
they serve as the fundamental units of the genetic code across all life 
on Earth and that the molecules may have been incorporated into 
protobiological systems because of their structural relatedness. We 
tested this idea by building assembly trees for alternated nucleobases 
(see section S5 for details). We found that MAs of alternated trees 
are always much higher (ranging from 31 to 38) than the one in 
reality, which is 16, as mentioned in the previous section. This 
analysis only indicates that the extant set of nucleobases were selected 
because of their relatedness, but why nature selects this particular set is 
another question since there could be many such sets. This intriguing 
and important question requires a much wider exploration of chemi-
cal space, yet we believe our methods provide a useful tool for fram-
ing this question.

Gene sequences
So far, we have focused on constructing assembly trees for mole-
cules, but our theory can equally be applied to gene sequences. We 
take one hypothetical gene sequence X (60 bases; Fig. 4) as an example 
to illustrate how we can make use of the compressed information 
carried by X’s assembly tree to reconstruct itself with less efforts. 
The naïve method is to add one base at one time, and then, 59 steps 
in total are needed to construct X, but notice that some segments 
are repeated multiple times. If it is possible to produce these repeti-
tive segments beforehand, then it is possible to take them directly 
and combine them with other segments in a precise way to obtain X, 
and this requires less than 59 steps [as producing repetitive segments is 
relatively easy (43), e.g., polymerase chain reaction, the reconstruction 
of the original sequence takes less efforts than the naïve method]. As 
the assembly tree can filter all of the repetitive and redundant infor-
mation (i.e., record the information of the sequence in the most 
compressed way), the information of this “precise way” is completely 
stored in the assembly tree. Then, we build X’s assembly tree, as 
shown in Fig. 4 (in this example, we only deal with one sequence X, 
and its assembly tree reduces to its shortest assembly pathway). Note 

that in this gene sequence case, we use nucleobases as the basic building 
blocks rather than chemical bonds as in the molecule cases.

Before reconstructing, we introduce a way to compress the infor-
mation hold in the assembly tree into a single string, which would be 
very useful in future studies, as the assembly tree of genomes would 
be huge and directly storing the tree structure is neither convenient 
nor efficient (note that while preserving the assembly tree informa-
tion is our priority, we are not intended to defeat any sophisticated 
data compression technique per se). The assembly tree in Fig. 4 can 
be rewritten as CG_TTG_A1_GAC1G_3CTC4_1T5CAG42342543, 
denoted as Y. Now, we can reconstruct X based on Y. The first step 
is to construct CG by simply combining the individual bases C and 
G (one step) and construct TTG by combining the individual bases 
T, T, and G (two steps). Second, construct A1, where “1” stands for 
the first segment in Y, which is CG. Thus, we only need one step to 
obtain ACG since CG has been constructed before. Third, construct 
GAC1G, where we can reuse “1” again, and we thus need four steps. 
Fourth, construct 3CTC4, where we can reuse “3” (A1, the third 
segment in Y) and “4” (GAC1G, the fourth segment in Y), and we 
thus need four steps. Last, we can construct the original sequence X 
based on the last part of Y, namely, “1T5CAG42342543” where the 
integer stands for the corresponding segment that has been obtained 
before and can thus be reused. Thus, we need 13 steps here. In total, 
we need 1 + 2 + 1 + 4 + 4 + 13 = 25 steps, which is much less than 
the naïve 59 steps. Last, to quantify the increase of information from 
the original sequence X (60 letters) to the lossless and compressed 
version Y (36 letters), we can use Shannon entropy (44, 45), a widely 
used quantity to describe the information of a string. Shannon entropy 
H of a string X (with n letters) is defined as H(X) = − ∑xp(x) · log2p(x), 
where p(x) is the probability that the letter x appears in this sequence 
X, which is set to be equal to the times x appears in X divided by 
n, and the sum goes through every distinct letter. Therefore, we ob-
tained that Shannon entropy of the original sequence H(X) is 1.851, 
while H(Y) is 3.251, increased by 1.76 times.

We do think that the application of assembly theory to gene as-
sembly has potential application to not only building new routes to 
engineer synthetic genomes by taking a series of genes, finding 
the common parts, and then finding the minimal route to assemble 
these parts to access all of the desired genes. Not only could this 
be used to efficiently build new function, but it also has promise to 
explore how evolution has reused genetic motifs beyond the current 
modular understanding and perhaps find more complex and con-
served routes for the propagation of genetic information across dif-
ferent genes.

Plasticizers
Plasticizers are added to polymers and formulations to make them 
more plastic, to decrease viscosity and friction, and to increase flex-
ibility (46), but they can leach into the environment. This is a prob-
lem since these compounds have been shown to be toxic (47). One 
big issue is that, in general, the evaluation of specific effects and 
prevalence of plasticizer molecules in the environment is hard, as so 
many different types are in use and many degradation pathways 
exist (47). This means that potentially vast numbers of molecules 
related to the plasticizer parent are present in the environment, pos-
ing similar or even greater health risks than the parent. However, by 
exploring the assembly tree of plasticizer molecules (see Fig. 5), it 
might be possible to map the molecules that are potentially contam-
inated and even identify unknown or unexpected molecules.

Fig. 4. The assembly tree of one hypothetical gene sequence X (as, here, we 
only deal with one sequence X, it reduces to its shortest assembly pathway in 
the key-step representation). Here, we use nucleobases as the basic building 
blocks rather than chemical bonds in the molecule cases. Thus, we explicitly draw 
those nucleobases at the bottom for clarification.
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Here, we built the assembly tree of 10 commonly used plasticizers 
including BBP (benzyl butyl phthalate), DEHP (di-2-ethylhexyl 
phthalate), DEHA [bis(2-ethylhexyl) adipate], and others. As seen 
from Fig. 5, these 10 seemingly distinct molecules share lots of com-
mon structures (i.e., key assembly building blocks), which are also 
highly related. These 10 relatively large plasticizers are constructed 
by only a dozen of these key building blocks. In particular, the four 
central structures highlighted green directly or indirectly connect to 
most of them (except for tricresyl phosphate) and are highly related 
themselves. We can thus imagine that if we can detect and identify 
these central/characteristic chemical structures and fragments in an 
environment [e.g., using the mass spectrometry technique for as-
sembly theory (36)], then we should be able to track down the par-
ent molecules and substantially narrow down the list of suspected 
contaminants. Nevertheless, it should be noticed that we only intro-
duced the concept here. The development of a reliable detection 
method would require a massive tree inclusive of all relevant com-
pounds both in terms of possible pollutants and products expected 
in the absence of pollution based on the environmental conditions.

Opiates
The search of opiate-based chemical space is an important test case 
since the family of compounds is highly distinctive with well-defined 
modular parts. One idea could be to use assembly trees to explore a 

set of potentially biochemically accessible new structures, as well 
as deduce what contingent information is present therein, and use 
them for finding new molecular targets. To do this, we computed the 
assembly tree of 10 compounds in the family of opiates (Fig. 6): 
Some of them are found in the opium plant (morphine, codeine, 
thebaine, and papaverine); some are synthetic opioids (fentanyl, 
remifentanil, methadone, pethidine, and diamorphine, also known 
as heroin), and the last one is salvinorin A, which is a -opioid re-
ceptor agonist (48) found in the Salvia divinorum plant but might 
not be properly considered as an opioid. The assembly tree captures 
some known features of the chemical space associated with these 
compounds: (i) Morphine, codeine, thebaine, and diamorphine are 
clustered in one place, with a major structure shared. (ii) Fentanyl 
and remifentanil are close in the tree, as they share a large substruc-
ture. (iii) In contrast, methadone, pethidine, and papaverine are not 
as closely related, sharing just a relatively small benzyl moiety. (iv) 
Salvinorin A is distinct from others, as it only connects with other 
compounds via very small structures.

By computing the assembly tree of these compounds, we ob-
tained not only the shortest but also other longer assembly pathways 
(another output of our algorithm; see section S4). The key building 
blocks included in all these pathways, constituting the assembly space 
of these compounds, are highly related and encode their structural 
information. Given that the molecules connected by these graphs 

Fig. 5. The assembly tree of 10 commonly used plasticizers including BBP, DEHP, DEHA, and others. For a clearer visualization, all plasticizers are made dimmer than 
other parts of the tree. The most central structures are highlighted green.
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are real and functionally interesting, we think it could be fruitful to 
see if navigating the trajectories defined by these pathways could 
lead to the discovery of new potential drug candidates. The idea to 
explore the space of natural products by fragmenting them is not new 
and has been tried before (49–51). For instance, the fragment-based 
drug discovery (FBDD) is a de novo generation strategy that uses 
fragments of known bioactive compounds to obtain new drug-like 
molecules (52, 53). The idea behind FBDD is that functionally com-
parable molecules share structural similarities; therefore, selecting 
fragments from molecules would propagate their properties, such as 
biological activity, to the newly generated compounds (54–56).

Compared to the size of the comparable chemical space, the as-
sembly space of these compounds is substantially smaller. We used 
the MC method to compute the pathways, so the size of the assembly 
space changes along with the number of MC steps. We found that 
the size of the assembly space is approximately 1500, which was con-
sistent even as we increase the number of MC steps up to the num-
ber that is far larger than the number needed to have very short 
pathways found. In this case, the smallest MA is found to be 105, 
while the total number of bonds in these 10 compounds is 268 (see 
details in section S6 for how the size of the assembly space changes 
with the number of MC steps). This small number (~1500) is not be-
cause our approach or our program cannot find more unique structures, 

but the assembly space itself is intrinsically small since it only 
includes structures that are shared by at least two compounds, in-
stead of any feasible structure or fragment. For a computationally 
tractable comparison, we used MOLGEN 5.0 (57) to calculate the 
total number of structures possible using a total of 10 carbon, nitrogen, 
oxygen, or sulfur species, which amounts to over 109 unique possibili-
ties and is much larger than the assembly space here. As morphine 
has 21 nonhydrogen atoms, the number of possible structures will 
be much larger than 109.

Next, we used the assembly trees for the purpose of de novo mol-
ecule generation by reconnecting the elements from the assembly 
pool. Critically, the products of these “reassembly” are closely related 
to the parent compounds, both structurally and in terms of functional 
properties. This means that the reassembly process locally explores 
the chemical space of the input compounds. To do this, we have 
implemented a method known as the Reassembler (see section S7 
for details). Briefly, it connects the assembly pool elements through 
the same pattern in which they were disconnected from their parent 
compound(s). This is effectively the reverse process used to gener-
ate the tree in the first place. To prove that generated molecules 
retain similarity to the parent compound(s), we have generated the 
assembly pool of known natural opiates [in contrast to the 10 com-
pounds in Fig. 6, here, we used codeine, morphine, noscapine, oripavine, 

Fig. 6. The assembly tree of nine compounds in the family of opiates and one -opioid receptor agonist (salvinorin A). Some of these opiates are natural (mor-
phine, codeine, thebaine, and papaverine), while others are synthetic (fentanyl, remifentanil, methadone, pethidine, and diamorphine, also known as heroin). For a 
clearer visualization, all opioids are made dimmer than other parts of the tree.
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papaverine, and thebaine (Fig. 7A) to avoid bias]. We used this as-
sembly pool to generate 1000 opiate-like compounds, and an exam-
ple set of these molecules is shown in Fig. 7B.

For comparison purposes, we also generated 1000 random com-
pounds only from the bonds present in the opiates (C─C, C═C, 
C─O, C═O, C─N, and C═N). For consistency, we have limited the 
molecular weight of all generated molecules and the unsaturation 
levels in the same range as the parent opiates, i.e., 281 to 368 Da and 
9 to 12 degrees of unsaturation. To ensure that the generated mole-
cules were at least chemically plausible, they were passed through 
two filters: The first filter uses SMARTS (SMILES arbitrary target 
specification) patterns that are commonly used to detect forbidden 
structures/structural motifs (57), while the other is based on RDKit 
conformation optimizer (see section S7) (58). If any of the forbid-
den structures were present or no conformation could be found at 
all, then the molecule was rejected, and another was generated in 
its place. As shown in Fig. 8A, molecules generated from assembly 
pools showed significantly higher similarity to opiates than the ran-
dom compounds (we also compared our result with the molecules 
generated from arbitrary substructural fragments; see section S8 for 
details, where our result is still better). Furthermore, they also exhib-
ited similar levels of drug-likeness to the opiates, measured using 
the “quantitative estimate of drug-likeness (QED)”, as opposed to 
random molecules which were significantly less drug-like (see Fig. 8B), 
showing that properties of parent molecules were retained just as 

well as the structural similarities. While two of the used parent opi-
ates, morphine and oripavine, may look almost identical to the human 
eye, the seemingly small differences (i.e., morphine cyclohexene 
ring versus oripavine cyclohexadiene ring with extra methylation 
on its hydroxyl group) determine significant differences in their 
properties. Morphine is a common analgesic, while oripavine is not 
clinically useful because of its toxicity and low therapeutic index. This 
suggests that, in the chemical space, the distance between these molecules 
might be greater than the apparent structural similarities alone.

Therefore, a more discrete measure is needed to capture their 
overall similarity level. In the example of assembly-opitate-1 (AP1) 
(see Fig. 7B), it has a discrete structure comprising a skeleton that 
combines the assembly spaces of the opiate-based space surround-
ing the known opiates, such as morphine or codeine. Thus, it is easy 
to see the structural similarities between AP1 and morphine as 
shown by the Tanimoto similarity score ca. 0.24. Furthermore, the 
QED is 0.72, while the QED of morphine is 0.70, which is notably 
close. In addition, the logP of AP1 is 2.42, while morphine logP is 
1.20. Nevertheless, the logP of morphine’s close relative, oripavine, 
is 2.12, which is close to our hypothetical AP1. Thus, our hybrid AP1 
seems to occupy a position in chemical space intermediate between 
morphine and oripavine. The compound has similarity to most 
opiates, including codeine, thebaine, and even noscapine, thereby 
occupying the intermediate space between all the opiates. This is 
promising since these molecules could be reasonably considered as 

Fig. 7. Comparison between natural opiates and opiate-like molecules  generated using Reassembler. (A) shows the six opiates used to generate the assembly pools, and 
(B) shows six new opiate-like molecules generated from those assembly pools. See section S7.3 for more detailed information on more new compounds.
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novel synthetic targets to be made (their constrained skeletons are 
themselves a hard target) and appear to be the first in a line of arti-
ficial natural products. A key question is whether it is cost effective 
to generate practical synthetic approaches to such molecules and to 
constrain the search of the assembly space around molecules that 
might be themselves easily made.

Our results demonstrate how the assembly theory can be used to 
generate compressed representations of chemical space while retain-
ing the relevant chemical and structural information. This means 
that it is possible to show how assembly spaces can be extended to 
multiple compounds, and we introduced a notation to effectively 
represent the key features of such assembly spaces. By developing 
an MC algorithm to calculate the shortest assembly pathways of a 
single molecule, we also show how it is possible to generate the 
assembly tree of any collection of molecules. We demonstrated this 
methodology in four distinct use cases, prebiotic chemistry, genetics, 
environmental chemistry, and drug discovery. The assembly tree of 
biomolecules shows that those vital molecules used in biology rep-
resent a compressed subset of the possible compounds, suggesting 
that they were subjected to evolutionary optimization. By analyzing 
the assembly space of plasticizers, it was possible to identify struc-
tural motifs common to many different pollutants. These motifs can 
be used as general-purpose signals to identify entire classes of pollut-
ants in complex environmental samples. The analysis of the opioids 
provides a map to future drug development, by extracting the hierar-
chical relationships between compounds and identifying key com-
ponents of possible drug candidates. The analysis of gene sequences 
demonstrates how assembly spaces can provide a lossless compres-
sion of sequences that retains the repeated motifs, demonstrating 
how complex gene sequences could be reconstructed from minimal 
genetic inputs. These four different case studies demonstrate the 
wide applicability of assembly trees as a tool in a diverse set of disci-
plines. Last, we developed a scheme to take a target set of molecules 
as templates for silico discovery and explore the enumeration of these 
targets using random and assembly tree–constrained approaches 
(Figs. 7 and 8). The evaluation of the properties provides a useful 
test of how assembly trees can capture information encoded with a 
chemical network constructed using external constraints from either 
biochemistry or technology. We hope that by exploring these trees, 
with information from other sources about what molecules are 

synthetically feasible, it will be possible to develop new routes to 
structure expansion that encode the transformations of chemical 
synthesis.

MATERIALS AND METHODS
The MC algorithms described in this manuscript were implemented 
in C++ and can be compiled using Visual Studio 2019. This code 
relied on the InChI standard libraries found at www.inchi-trust.org/. 
The Reassembler approach to generate new compounds from assem-
bly pools was implemented in Python (with RDKit). Details on the 
implementation and instructions on how to use the software can be 
found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2465
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